Transfinite ordinal partition relations \& and coloured finite digraphs 03E02, 05C15, 05C20

Thilo Weinert

Hausdorff Research Centre for Mathematics,
Bonn, Germany

$40^{\text {th }}$ Winterschool on Abstract Analysis, Section Set Theory \& Topology, 2012, Sunday, January 29 ${ }^{\text {th }}, 16: 00-16: 40$

1 Introduction

- The context

2 Results by other people

- $\alpha=\beta$
- $\alpha>\beta$
- Ramsey numbers

3 Now in colour

- An eclectical definition
- An analogue theorem and two counterexamples
- A new Ramsey number and a proof sketch

4 An upper bound
5 Another context

- Yet another definition
- Yet again some upper bounds
- Two other counterexamples

6 Finale

- Now we know more
- Open questions

Definition

$\alpha \rightarrow(\beta, n)$ means
$\forall c:[\alpha]^{2}\left(\exists X \in[\alpha]^{\beta}: c^{"}\left([X]^{2}\right)=0 \vee \exists X \in[\alpha]^{n}: c^{" \prime}\left([X]^{2}\right)=1\right)$.

Remark

Here we are always referring to the order-type, i.e. $[\gamma]^{\delta}$ is the set of all subsets of γ whose order-type is δ.

Fact

For any linear order φ we have both $\varphi \nrightarrow(\bar{\varphi}+1, \omega)$ and $\varphi \nrightarrow\left(\omega^{*}, \omega\right)$.

Theorem (Ernst Specker, 1956)

 $\omega^{2} \rightarrow\left(\omega^{2}, n\right)$ for all natural n.Theorem (Ernst Specker, 1956)
$\omega^{m} \nrightarrow\left(\omega^{m}, 3\right)$ for all $m \in \omega \backslash 3$.
Theorem (Eric Charles Milner, 1973)
$\omega^{\omega} \rightarrow\left(\omega^{\omega}, n\right)$ for all natural n.
Theorem (Carl Darby \& Jean Ann Larson)
$\omega^{\omega^{2}} \rightarrow\left(\omega^{\omega^{2}}, 4\right)$ but $\omega^{\omega^{2}} \nrightarrow\left(\omega^{\omega^{2}}, 5\right)$.
Question (Handbook of Set Theory)
Does $\omega^{\omega^{3}} \rightarrow\left(\omega^{\omega^{3}}, 3\right)$?

Theorem (Carl Darby)

 $m \rightarrow(4)_{2^{32}}^{3}$ implies $\omega^{\omega^{\alpha^{\alpha+1}}} \nrightarrow\left(\omega^{\omega^{\alpha+1}}, m\right)^{2}$.Theorem (Darby, Schipperus \& Larson)
$\beta \geqslant \gamma \geqslant 1$ implies $\omega^{\omega^{\rho+\gamma}} \nrightarrow\left(\omega^{\omega^{\rho+\gamma}}, 5\right)^{2}$.

Theorem (Carl Darby \& Rene Schipperus)

Theorem (Rene Schipperus)
$\beta \geqslant \gamma \geqslant \delta \geqslant \varepsilon \geqslant 1$ implies $\omega^{\omega^{\beta+\gamma+\delta+\varepsilon}} \nrightarrow\left(\omega^{\omega^{\beta+\gamma+\delta+\varepsilon}}, 3\right)^{2}$.

Theorem (Paul Erdős \& Richard Rado, 1956)

The partition relation ω I $\rightarrow(\omega m, n)$-with I, $m, n<\omega$-holds true if and only if every directed graph $D=\langle I, A\rangle$ contains an independent set of size m or there is a complete subtournament S of D induced by a set of n vertices such that all triples in S are transitive.

Call the m-sized independent set I_{m} and the transitive digraph on n vertices L_{n}, then this theorem may be restated as follows:

Theorem

$r(\omega m, n)=\omega r\left(I_{m}, L_{n}\right)$.
Theorem (James Earl Baumgartner, 1974)
You may replace ω by any infinite cardinal in the theorem above.

Theorem (Jean Larson, William Mitchell, 1997) $\forall n \in \omega \backslash 2: r\left(I_{n}, L_{3}\right) \leqslant n^{2}$.

Theorem (Paul Erdős, Leo Moser, 1964) $\forall n \in \omega \backslash 3: r\left(I_{2}, L_{n}\right) \leqslant 2^{n-1}$.

Theorem (Jean Larson, William Mitchell, 1997) $\forall m \in \omega \backslash 3, n \in \omega \backslash 4: r\left(l_{2}, L_{n}\right) \leqslant u(m, n)$ with

$$
\begin{aligned}
u(m, n):= & \frac{1}{2}\left(2 ^ { n - 3 } \left(4\binom{m+n-4}{n-1}+6\binom{m+n-5}{n-2}\right.\right. \\
& \left.\left.+9\binom{m+n-6}{n-3}\right)+2^{n-4} \cdot 17\binom{m+n-6}{m-2}-1\right)
\end{aligned}
$$

Theorem (Eva Nosal, 1974)

For $n \in \omega \backslash 3$ we have $\omega^{n} \rightarrow\left(2^{n-2}, \omega^{3}\right)$ and $\omega^{n} \nrightarrow\left(2^{n-2}+1, \omega^{3}\right)$.

Theorem (Eva Nosal, 1979)
For $m \in \omega \backslash 5$ and $n \in \omega \backslash m$ we have $\omega^{n} \rightarrow\left(2^{\left\lfloor\frac{n-1}{m-1}\right\rfloor}, \omega^{m}\right)^{2}$ but $\omega^{n} \nrightarrow\left(2^{\left\lfloor\frac{n-1}{m-1}\right\rfloor+1}, \omega^{m}\right)^{2}$.

	3	4	5	6	7	8	9	m
3	6	9	14	18	23	28	36	
4	9	18	25					
ω								
$\omega 2$	$\omega 4$	$\omega 8$	$\omega 14$	$\omega 28$				
$\omega 3$	$\omega 9$							
ω^{2}								
$\omega^{2} 2$								
ω^{3}	ω^{4}	ω^{4}	ω^{5}	ω^{5}	ω^{5}	ω^{5}	ω^{6}	$\omega^{2+} \mid$ ld $\left.(m)\right\rceil$
ω^{4}	ω^{7}	ω^{7}	ω^{10}	ω^{10}	ω^{10}	ω^{10}		
ω^{5+n}	$\omega^{9+2 n}$	$\omega^{9+2 n}$	$\omega^{13+3 n}$	$\omega^{13+3 n}$	$\omega^{13+3 n}$	$\omega^{13+3 n}$	$\omega^{17+4 n}$	$\left.\omega^{1+(4+n)} \backslash \overline{\mid d}(m)\right\rceil$
ω^{ω}								
$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$						
$\kappa \omega 2$								
кw3								

Definition

A triple is called agreeable if and only if it is one of the following.

Fact

A triple is disagreeable if and only if it is either...

- ... a cyclic triple, regardless of the colouring, i.e.

- . . . or one of the following transitive triples:

Theorem (W., 2011)

The partition relation $\omega^{2} I \rightarrow\left(\omega^{2} m, n\right)^{2}$ holds true if and only if every edge-coloured digraph $C=\langle I, A, c\rangle$ with ran $(c)=3$ contains an independent set of size m or there is a subtournament S of C induced by a set of n vertices such that all triples in S are agreeable.

Call a coloured tournament on n vertices all triples of which are agreeable an A_{n}, then this theorem may be restated as follows:

Theorem

$r\left(\omega^{2} m, n\right)=\omega^{2} r\left(I_{m}, A_{n}\right)$.
Does this generalize as before? Not quite, because. . .

Theorem (Erdős, Hajnal, 1971)

$2^{\kappa}=\kappa^{+}$implies that $\kappa^{+^{2}} \nrightarrow\left(\kappa^{+^{2}}, 3\right)$.
But in fact the above theorem also holds true for a weakly compact cardinal instead of ω, i.e.

Theorem (W., 2011)
Let κ be weakly compact. Then $r\left(\kappa^{2} m, n\right)=\kappa^{2} r\left(I_{m}, A_{n}\right)$.

An analogue theorem and two counterexamples

Thilo Weinert, Hausdorff Research Institute for Mathematics
Transfinite ordinal partition relations \& coloured digraphs

An analogue theorem and two counterexamples

Proposition

- $\omega^{2} r(3,3,3,3,3,3) \rightarrow\left(\omega^{2} 2,3\right)$
- $r(3,3,3,3,3,3) \leqslant 1898$
- $\omega^{2} r(4,4,4) \rightarrow\left(\omega^{2} 2,3\right)$
- $r(4,4,4) \leqslant 236$
- $\omega^{2} r(4,6) \rightarrow\left(\omega^{2} 2,3\right)$
- $r(4,6) \leqslant 41$

Theorem (W., 2011)
 $\omega^{2} 10 \rightarrow\left(\omega^{2} 2,3\right)$.

Proof idea: Consider the number of arrows of each colour!

Fact

For any counterexample to $\omega^{2} 10 \rightarrow\left(\omega^{2} 2,3\right)$:

- \# $\in 11 \backslash 5$.
- $\# \longmapsto_{p} \in 31 \backslash 25$.
- $\# \mapsto_{y} \in 11 \backslash 5$.

After this insight it is possible to reduce the structure of the turquoise arrows to two cases:

A new Ramsey number and a proof sketch

A new Ramsey number and a proof sketch

Theorem (W., 2011)

$$
\forall n \in \omega \backslash 2: r\left(I_{n}, A_{3}\right) \leqslant \frac{(2 n+1)\left(n^{2}+4 n-6\right)}{3} .
$$

Corollary

$$
\forall n \in \omega \backslash 2: r\left(\omega^{2} n, 3\right) \leqslant \omega^{2} \frac{(2 n+1)\left(n^{2}+4 n-6\right)}{3} .
$$

Remark

We have $r(n, 3), r\left(I_{n}, L_{3}\right) \in \mathcal{O}\left(n^{2}\right)$.

Definition

A triple is called strongly agreeable if and only if it is agreeable and does not contain any yellow arrow. So it is strongly agreeable precisely if it is one of these:

Theorem (W., 2011)
Let κ be weakly compact. The partition relation $\kappa \omega l \rightarrow(\kappa \omega m, n)$ holds true if and only if every coloured digraph $C=\langle I, A, c\rangle$ with ran $(c)=2$ contains an independent set of size m or there is a subtournament S of C induced by a set of n vertices such that all triples in S are strongly agreeable.

Call a coloured tournament on n vertices all triples of which are strongly agreeable an S_{n}, then the theorem above may be restated as follows:

Theorem

Let κ be weakly compact. Then $r(\kappa \omega m, n)=\kappa \omega r\left(I_{m}, S_{n}\right)$.
The same works for two weakly compact cardinals of different size, i.e.

Theorem

Let κ be weakly compact and let $\lambda<\kappa$ be weakly compact. Then $r(\kappa \lambda m, n)=\kappa \lambda r\left(I_{m}, S_{n}\right)$.

Theorem (W., 2012)
For all $m \in \omega \backslash 3$ we have $r\left(I_{m}, S_{3}\right) \leqslant m(2 m-1)$.

Corollary

For κ weakly compact and all $m \in \omega \backslash 3$ we have $r(\kappa \omega m, 3) \leqslant \kappa \omega m(2 m-1)$.

Theorem (W., 2012)

$$
\text { For any } n \in \omega \backslash 3 \text { we have } r\left(l_{2}, S_{n}\right) \leqslant \frac{4^{n-1}+2}{3} \text {. }
$$

Corollary

For κ weakly compact and any $n \in \omega \backslash 3$ we have

$$
r(\kappa \omega 2, n) \leqslant \kappa \omega \frac{4^{n-1}+2}{3} .
$$

Theorem (W., 2012)

For all $m \in \omega \backslash 2$ and all $n \in \omega \backslash 3$ we have $r\left(I_{m}, S_{n}\right) \leqslant u(m, n)$ and for all weakly compact κ we have $r(\kappa \omega m, n) \leqslant \kappa \omega u(m, n)$ where

$$
\begin{aligned}
u(m, n): & :=\frac{1}{4}\left(3+5 \cdot 4^{m-2}\binom{m+n-5}{m-2}\right. \\
& -\sum_{i=3}^{m}\left(24 i^{2}-76 i+39\right) 4^{m-i}\binom{m+n-3-i}{m-i} \\
& \left.+4^{m-1} \sum_{i=3}^{n} 4^{i-2}\binom{m+n-2-i}{n-i}\right)
\end{aligned}
$$

Two other counterexamples

Two other counterexamples

Thilo Weinert, Hausdorff Research Institute for Mathematics
Transfinite ordinal partition relations \& coloured digraphs

	3	4	5	6	7	8	9	m
3	6	9	14	18	23	28	36	
4	9	18	25					
ω								
$\omega 2$	$\omega 4$	$\omega 8$	$\omega 14$	$\omega 28$				
$\omega 3$	$\omega 9$							
ω^{2}								
$\omega^{2} 2$	$\omega^{2} 10$							
ω^{3}	ω^{4}	ω^{4}	ω^{5}	ω^{5}	ω^{5}	ω^{5}	ω^{6}	$\omega^{2+} \mid$ dd $\left.(m)\right\rceil$
ω^{4}	ω^{7}	ω^{7}	ω^{10}	ω^{10}	ω^{10}	ω^{10}		
ω^{5+n}	$\omega^{9+2 n}$	$\omega^{9+2 n}$	$\omega^{13+3 n}$	$\omega^{13+3 n}$	$\omega^{13+3 n}$	$\omega^{13+3 n}$	$\omega^{17+4 n}$	$\omega^{1+(4+n)}$ \Id (m)
ω^{ω}								
$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$	$\omega^{\omega^{2}}$						
$\kappa \omega 2$	たい6							
кw3	$\kappa \omega 15$							

Question

What are $\mathcal{O}\left(r\left(I_{n}, A_{3}\right)\right)$ and $\Omega\left(r\left(I_{n}, A_{3}\right)\right)$?

Remark

Proving lower bounds is often difficult.

Example (Jeong Han Kim, 1995)
 $r(n, 3) \in \Theta\left(\frac{n^{2}}{\log n}\right)$

Example (Noga Alon \& Vojtěch Rödl, 2005)
$r(n, 3,3) \in \Theta\left(\frac{n^{3}}{\text { polylog } n}\right)$.

Thank you very much for your attention!

