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Introduction
°

The context

Definition
a — (B, n) means : :
Ve : [a2(3X € [a)’ : c([X]?) = 0vaX € [a]": c([X]?) = 1).

Remark

Here we are always referring to the order-type, i.e. [Y]° is the
set of all subsets of v whose order-type is §.

Fact
For any linear order ¢ we have both ¢ /4 (¢ + 1,w) and

¢ 7 (W' w).
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Results by other people
0

Theorem (Ernst Specker, 1956)

w? — (w?, n) for all natural n.

Theorem (Ernst Specker, 1956)
w™ A (W™, 3) forallm e w\ 3.

Theorem (Eric Charles Milner, 1973)

w* — (w¥, n) for all natural n.
Theorem (Carl Darby & Jean Ann Larson)
W — (W, 4) but w** A (W, 5).

Question (Handbook of Set Theory)

Does w** — (w*’,3)?
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Results by other people
oe

Theorem (Carl Darby)

a+l a+l

m — (4)3, implies w” /A (W, m)2

Theorem (Darby, Schipperus & Larson)
B>~ >1 implies w*”™ A (w7, 5)2.

Theorem (Carl Darby & Rene Schipperus)
B=~>0>1 impliesw”” 7" 4 (w7 4)2.

Theorem (Rene Schipperus)

Be~y>20>¢e>1impliesw” ™ 4 (w77 3)2
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Results by other people
©00

a>f

Theorem (Paul Erdés & Richard Rado, 1956)

The partition relation wl — (wm, n)—with |, m, n < w—holds
true if and only if every directed graph D = (I, A) contains an
independent set of size m or there is a complete
subtournament S of D induced by a set of n vertices such that
all triples in S are transitive.

Call the m-sized independent set /,, and the transitive digraph
on n vertices L,, then this theorem may be restated as follows:
Theorem

r(wm,n) = wr(ly, L,).

Theorem (James Earl Baumgartner, 1974)

You may replace w by any infinite cardinal in the theorem
above.
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Results by other people
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a>f

Theorem (Jean Larson, William Mitchell, 1997)
Vnew\2:r(l,L3) < n?

Theorem (Paul Erdds, Leo Moser, 1964)
Vnew\3:r(h,L,) <2t

Theorem (Jean Larson, William Mitchell, 1997)
Vmew\3,new\4:r(h L, < u(lm,n) with

mim oM om0
+9(m+n—6>)+2n4.17(m+n—6) ~1)

n—3 m—2
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Results by other people
°

Ramsey numbers

| 3| 4] 5] 6] 7] 8] 9 | m
3 6 9 14 18 23 28 36
4 9 18 25
w w w w w w w w w
w2 w4 w8 wld | w28
w3 w9
2 2 o2 2 2 o2 2 2 2
w?2
w3 wt | wt w? w? w? w? i NG
A o7 nY Ry o0 Y o0
WPt || 920 9420 13+3n|  ,I3+3n[  13+3n [ 13+3n  I7+4n W1—}—(4-§—n)|'|d(m)'|
w® w® W’
Kw2
kw3
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Now in colour
©000

An analogue theorem and two counterexamples

Theorem (W., 2011)

The partition relation w?l — (w?m, n)? holds true if and only
if every edge-coloured digraph C = (I, A, c) with ran(c) =3
contains an independent set of size m or there is a
subtournament S of C induced by a set of n vertices such that
all triples in' S are agreeable.

Call a coloured tournament on n vertices all triples of which are
agreeable an A, then this theorem may be restated as follows:

Theorem

r(w?m, n) = w?r(ly, An).

Does this generalize as before? Not quite, because. ..
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Now in colour
000

An analogue theorem and two counterexamples

Theorem (Erdés, Hajnal, 1971)
28 = it implies that k2 4 (K172, 3).

But in fact the above theorem also holds true for a weakly
compact cardinal instead of w, i.e.

Theorem (W., 2011)

Let r be weakly compact. Then r(k?m, n) = r%r(l,, A,).
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Another context
.

Yet another definition

Definition

A triple is called strongly agreeable if and only if it is agreeable
and does not contain any yellow arrow. So it is strongly
agreeable precisely if it is one of these:

ININ N\ S

Theorem (W., 2011)

Let k be weakly compact. The partition relation

kwl — (kwm, n) holds true if and only if every coloured
digraph C = (I, A, ¢) with ran(c) = 2 contains an independent
set of size m or there is a subtournament S of C induced by a
set of n vertices such that all triples in S are strongly
agreeable.
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Another context
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Yet again some upper bounds

Call a coloured tournament on n vertices all triples of which
are strongly agreeable an S, then the theorem above may be
restated as follows:

Theorem

Let k be weakly compact. Then r(kwm, n) = kwr(ly, Sp).

The same works for two weakly compact cardinals of different
size, i.e.

Theorem

Let k be weakly compact and let A < k be weakly compact.
Then r(kAm, n) = KAr(Ipm, Sp).

Theorem (W., 2012)
For all m € w\ 3 we have r(l,,S3) < m(2m — 1).
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Another context
ooe
Yet again some upper bounds

Theorem (W., 2012)

For allm € w\ 2 and all n € w\ 3 we have
r(Im, Sn) < u(m, n) and for all weakly compact x we have
r(kwm, n) < kwu(m, n) where

1
u(m, n) ::Z (3 +5. 4’"_2(

—Z}mﬂ—7a+3mﬂH(m+”_3_)

: m—i
i=3

Ny +n—2—i
4m—1 41—2 m )

m—l—n—5>

m—2
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Finale

Now we know more

| 3| 4] 5] 6] 7] 8] 9 | m
3 6 9 14 18 23 28 36
4 9 18 25
w w w w w w w w w
w2 w4 w8 wld | w28
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2 2 o2 2 2 o2 2 2 2
w?2
w3 wt | wt w? w? w? w? i NG
A o7 nY Ry o0 Y o0
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